A Large-Scale Functional Analysis of Putative Target Genes of Mating-Type Loci Provides Insight into the Regulation of Sexual Development of the Cereal Pathogen Fusarium graminearum
نویسندگان
چکیده
Fusarium graminearum, the causal agent of Fusarium head blight in cereal crops, produces sexual progeny (ascospore) as an important overwintering and dissemination strategy for completing the disease cycle. This homothallic ascomycetous species does not require a partner for sexual mating; instead, it carries two opposite mating-type (MAT) loci in a single nucleus to control sexual development. To gain a comprehensive understanding of the regulation of sexual development in F. graminearum, we used in-depth and high-throughput analyses to examine the target genes controlled transcriptionally by two-linked MAT loci (MAT1-1, MAT1-2). We hybridized a genome-wide microarray with total RNAs from F. graminearum mutants that lacked each MAT locus individually or together, and overexpressed MAT1-2-1, as well as their wild-type progenitor, at an early stage of sexual development. A comparison of the gene expression levels revealed a total of 1,245 differentially expressed genes (DEGs) among all of the mutants examined. Among these, genes involved in metabolism, cell wall organization, cellular response to stimuli, cell adhesion, fertilization, development, chromatin silencing, and signal transduction, were significantly enriched. Protein binding microarray analysis revealed the presence of putative core DNA binding sequences (ATTAAT or ATTGTT) for the HMG (high mobility group)-box motif in the MAT1-2-1 protein. Targeted deletion of 106 DEGs revealed 25 genes that were specifically required for sexual development, most of which were regulated transcriptionally by both the MAT1-1 and MAT1-2 loci. Taken together with the expression patterns of key target genes, we propose a regulatory pathway for MAT-mediated sexual development, in which both MAT loci may be activated by several environmental cues via chromatin remodeling and/or signaling pathways, and then control the expression of at least 1,245 target genes during sexual development via regulatory cascades and/or networks involving several downstream transcription factors and a putative RNA interference pathway.
منابع مشابه
A Phenome-Based Functional Analysis of Transcription Factors in the Cereal Head Blight Fungus, Fusarium graminearum
Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The fungus produces mycotoxins that are harmful to animal and human. In this study, a systematic analysis of 17 phenotypes of the mutants in 657 Fusarium graminearum genes encoding putative transcription factors (TFs) resulted in a database of over 11,000 phenotypes (phenome). This database provid...
متن کاملA Putative Transcription Factor pcs1 Positively Regulates Both Conidiation and Sexual Reproduction in the Cereal Pathogen Fusarium graminearum
The plant pathogen Fusarium graminearum causes Fusarium head blight in cereal crops and produces mycotoxins that are harmful to animals and humans. For the initiation and spread of disease, asexual and sexual reproduction is required. Therefore, studies on fungal reproduction contribute to the development of new methods to control and maintain the fungal population. Screening a previously gener...
متن کاملThe White Collar Complex Is Involved in Sexual Development of Fusarium graminearum
Sexual spores (ascospores) of Fusarium graminearum, a homothallic ascomycetous fungus, are believed to be the primary inocula for epidemics of the diseases caused by this species in cereal crops. Based on the light requirement for the formation of fruiting bodies (perithecia) of F. graminearum under laboratory conditions, we explored whether photoreceptors play an important role in sexual devel...
متن کاملPhylogeny and genetic diversity of Fusarium graminearum species complex associated with Fusarium head blight of wheat in Moghan plain (Iran)
Thirty-seven isolates of Fusarium graminearum species complexobtained from wheat heads with Fusarium head blight symptoms were selected and used for phylogenetic studies. They were collected from different localities of Moghan plain (Ardebil province, Iran). Partial sequences of translation elongation factor 1-alpha (TEF), putative reductase (RED) and UTP-ammonia ligase (URA) genes were amplifi...
متن کاملAbaA Regulates Conidiogenesis in the Ascomycete Fungus Fusarium graminearum
Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops such as wheat, barley, and maize. Both sexual (ascospores) and asexual (conidia) spores are produced in F. graminearum. Since conidia are responsible for secondary infection in disease development, our objective of the present study was to reveal the molecular mechanisms underlying conidiog...
متن کامل